
SECURITY REVIEW
REPORT FOR
FUNGIFY

1

Oct.23

+44 808 2711555 info@hexens.io

⬢ About Hexens / 4

⬢ Audit led by / 5

⬢ Methodology / 6

⬢ Severity structure / 7

⬢ Executive summary / 9

⬢ Scope / 10

⬢ Summary / 11

⬢ Weaknesses / 12

⬡ All interest tokens can be stolen from the interest market / 12

⬡ CErc20InterestMarket collateral can be directly used to pay interest

and bypass health check / 15

⬡ CErc721 liquidation will always revert if interest state is up-to-date /

18

⬡ Loans with CErc721 collateral can be made unliquidatable / 21

⬡ Inadequate constraints on Seize Share Mantissa in the protocol / 24

⬡ All NFTs are evaluated at their floor price and can lead to user's loss

/ 26

⬡ Missing maximum limit on stalePriceDelay / 33

CONTENTS

2

+44 808 2711555 info@hexens.io

⬡ Custom errors / 34

⬡ Missing recovery mechanisms for ETH and ERC20 tokens / 35

⬡ Redundant code / 37

⬡ Missing event on CErc721 liquidation / 40

⬡ Function should be marked external / 42

⬡ Conditional early exit optimisation / 43

CONTENTS

3

+44 808 2711555 info@hexens.io

ABOUT HEXENS

Hexens is a cybersecurity company that strives to elevate the
standards of security in Web 3.0, create a safer environment for
users, and ensure mass Web 3.0 adoption.

Hexens has multiple top-notch auditing teams specialized in
different fields of information security, showing extreme
performance in the most challenging and technically complex
tasks, including but not limited to: Infrastructure Audits, Zero
Knowledge Proofs / Novel Cryptography, DeFi and NFTs. Hexens not
only uses widely known methodologies and flows, but focuses on
discovering and introducing new ones on a day-to-day basis.

In 2022, our team announced the closure of a $4.2 million seed
round led by IOSG Ventures, the leading Web 3.0 venture capital.
Other investors include Delta Blockchain Fund, Chapter One, Hash
Capital, ImToken Ventures, Tenzor Capital, and angels from Polygon
and other blockchain projects.

Since Hexens was founded in 2021, it has had an impressive track
record and recognition in the industry: Mudit Gupta - CISO of
Polygon Technology - the biggest EVM Ecosystem, joined the
company advisory board after completing just a single
cooperation iteration. Polygon Technology, 1inch, Lido, Hats
Finance, Quickswap, Layerswap, 4K, RociFi, as well as dozens of
DeFi protocols and bridges, have already become our customers
and taken proactive measures towards protecting their assets.

4

+44 808 2711555 info@hexens.io 55

AUDIT
LED BY

Audit Starting Date
16.10.2023

Audit Completion Date
06.11.2023

KASPER
ZWIJSEN
Head of Smart Contract
Audits | Hexens

+44 808 2711555 info@hexens.io

METHODOLOGY

Companies often assign just one engineer to one security assessment
with no specified level. Despite the possible impeccable skills of the
assigned engineer, it carries risks of the human factor that can affect
the product's lifecycle.

COMMON AUDIT PROCESS

Hexens methodology involves 2 teams, including multiple auditors of
different seniority, with at least 5 security engineers. This unique
cross-checking mechanism helps us provide the best quality in the
market.

HEXENS METHODOLOGY

6

+44 808 2711555 info@hexens.io

SEVERITY CHARACTERISTICS

Vulnerabilities can range in severity and impact, and it's important
to understand their level of severity in order to prioritize their
resolution. Here are the different types of severity levels of
vulnerabilities:

CRITICAL
Vulnerabilities with this level of severity can result in significant financial
losses or reputational damage. They often allow an attacker to gain
complete control of a contract, directly steal or freeze funds from the
contract or users, or permanently block the functionality of a protocol.
Examples include infinite mints and governance manipulation.

SEVERITY STRUCTURE
The vulnerability severity is calculated based on two components
● Impact of the vulnerability
● Probability of the vulnerability

7

IMPACT PROBABILITY

Rare Unlikely Likely Very Likely

Low / Info Low / Info Low / Info Medium Medium

Medium Low / Info Medium Medium High

High Medium Medium High Critical

Critical Medium High Critical Critical

+44 808 2711555 info@hexens.io

HIGH
Vulnerabilities with this level of severity can result in some financial losses
or reputational damage. They often allow an attacker to directly steal yield
from the contract or users, or temporarily freeze funds. Examples include
inadequate access control integer overflow/underflow, or logic bugs.

MEDIUM
Vulnerabilities with this level of severity can result in some damage to the
protocol or users, without profit for the attacker. They often allow an attacker
to exploit a contract to cause harm, but the impact may be limited, such as
temporarily blocking the functionality of the protocol. Examples include
uninitialized storage pointers and failure to check external calls.

LOW
Vulnerabilities with this level of severity may not result in financial losses or
significant harm. They may, however, impact the usability or reliability of a
contract. Examples include slippage and front-running, or minor logic bugs.

INFORMATIONAL
Vulnerabilities with this level of severity are regarding gas optimizations and
code style. They often involve issues with documentation, incorrect usage
of EIP standards, best practices for saving gas, or the overall design of a
contract. Examples include not conforming to ERC20, or disagreement
between documentation and code.

It's important to consider all types of vulnerabilities, including
informational ones, when assessing the security of the project. A
comprehensive security audit should consider all types of
vulnerabilities to ensure the highest level of security and
reliability.

8

+44 808 2711555 info@hexens.io 99

EXECUTIVE
SUMMARY

OVERVIEW

This audit covered the "Pools" contracts of Fungify, a new lending
protocol that builds on Compound to support lending/borrow of
NFTs and introduces a special interest market token that is linked
to NFT markets.

Our security assessment was a full review of the smart contracts.

During our audit, we have identified 2 critical severity
vulnerabilities. The first one would allow the interest markets to be
drained of all of its underlying tokens. The second one would
allow bypassing a health check and escaping collateral to create
collateral-free loans and bad debt for the protocol.

We have also identified 2 high severity vulnerabilities, various
minor vulnerabilities and code optimisations.

Finally, all of our reported issues were fixed or acknowledged by
the development team and consequently validated by us.

We can confidently say that the overall security and code quality
have increased after completion of our audit.

+44 808 2711555 info@hexens.io

The analyzed resources are located on:
https://github.com/fungify-dao/taki-contracts/commit/b63374093
5c8b45a33833f753979afd06acea3f3

The issues described in this report were fixed in the following
commit:
https://github.com/fungify-dao/taki-contracts/commit/271f22fbf32
c760ce68c53c877dfb2d6458232ae

SCOPE

10

https://github.com/fungify-dao/taki-contracts/commit/b633740935c8b45a33833f753979afd06acea3f3
https://github.com/fungify-dao/taki-contracts/commit/b633740935c8b45a33833f753979afd06acea3f3
https://github.com/fungify-dao/taki-contracts/commit/271f22fbf32c760ce68c53c877dfb2d6458232ae
https://github.com/fungify-dao/taki-contracts/commit/271f22fbf32c760ce68c53c877dfb2d6458232ae

+44 808 2711555 info@hexens.io

TOTAL: 13

SUMMARY

HIGH

CRITICAL

MEDIUM

2

2

2

INFORMATIONAL 5

SEVERITY NUMBER OF FINDINGS

SEVERITY STATUS

11

LOW 2

+44 808 2711555 info@hexens.io

FNG-11. ALL INTEREST TOKENS CAN
BE STOLEN FROM THE INTEREST
MARKET

SEVERITY: Critical

PATH: CErc721.sol:supplyInterestStoredInternal:L752-763

REMEDIATION: the CErc721 contract should override the
_beforeTokenTransfer hook and force a claiming of interest
rewards for both the sender and receiver

STATUS: fixed

DESCRIPTION:

The NFT underlying CToken, CErc721, uses a CErc20InterestMarket as tokens

for both interest rewards for suppliers and interest payments for borrowers.

In order to calculate the rewards for those supplies, it uses a supply index

and interestIndex that is stored in the user’s snapshot such that past

rewards aren’t counted (e.g. after claiming).

The difference between the new supplyIndex and interestIndex is then

multiplied with the token balance of the user to calculate a supplier's

earned interest.

However, this process does not take transfers into account and this can be

used to create arbitrary interest rewards. More specifically, when the

shares (CTokens) are transferred to another user, the balance increases,

WEAKNESSES
This section contains the list of discovered weaknesses.

12

+44 808 2711555 info@hexens.io 13

but it does not set the interestIndex for the receiving user (e.g. by forcing a

claim in a _beforeTokenTransfer hook).

In other words, a balance increase occurs and thus the receiving user can

claim rewards over the new balance without actually having held this

balance over the reward period.

For example:

1. User A supplies 1 NFT and mints 100 CTokens.

2. User B-Z call a reward claim to set their interestIndex (otherwise a

division by 0 would occur).

3. After some time, the supplyIndex has increased.

4. User A can now claim rewards and transfer the balance of 100

CTokens to user B.

5. User B can now claim the same rewards over the new balance and

then transfer the balance to user C.

6. Repeat step 5 for all users.

By having some built up interest from the index and enough accounts (e.g.

using an exploit contract) an attacker could instantly and completely drain

the interest market of all its underlying tokens.

+44 808 2711555 info@hexens.io 14

function supplyInterestStoredInternal(address account) internal view returns (uint) {

 Exp memory exchangeRate = Exp({mantissa: exchangeRateStored()});

 uint supplyBalance = mul_ScalarTruncate(exchangeRate, accountTokens[account]);

 if (supplyBalance == 0) {

 return 0;

 }

 SupplyInterestSnapshot storage supplyInterestSnapshot = supplyInterest[account];

 uint newInterestAccrued = (supplyBalance * supplyIndex / supplyInterestSnapshot.interestIndex) -

supplyBalance;

 return supplyInterestSnapshot.interestAccrued + newInterestAccrued;

}

+44 808 2711555 info@hexens.io

FNG-17. CERC20INTERESTMARKET
COLLATERAL CAN BE DIRECTLY USED
TO PAY INTEREST AND BYPASS
HEALTH CHECK

SEVERITY: Critical

PATH: CErc20InterestMarket.sol:payInterestInternal:L67-101

REMEDIATION: the function payInterestInternal should do a check
by calling to Comptroller.isRedeemAllowed for the payer and the
payment amount in a require statement. Similar to the redeem
function

STATUS: fixed

DESCRIPTION:

A CErc20InterestMarket is a CERC20 token that can be used to pay interest

for a CERC721 loan. These tokens have USD stable coins as underlying, such

as USDC. These tokens are also normal CERC20 tokens and can be used as

collateral for loans, so any balance change should be accompanied by a

health check.

However, the function to pay interest for a CERC721 loan directly takes from

the balance of the payer using payInterestInternal. If that balance was

used as collateral in a loan, then this would bypass the health check

completely, making the loan insolvent.

This provides a way to instantly (in a single transaction) create loans

without any collateral backing it, creating large bad debt for the protocol.

15

+44 808 2711555 info@hexens.io 16

For example:

1. A user has a loan for an ERC721 worth 100 ETH.

2. After some time, the user racks up 10 ETH worth in interest for that

loan.

3. The user now uses a second account to create a new loan using 10

ETH worth of USDC as collateral and borrowing as much as possible

(e.g. 8.5 ETH worth of DAI).

4. The user now calls CErc721:repayBorrowBehalf, which will call

CErc20InterestMarket:payInterestInternal and pay the interest

using the collateral balance of the second account, bypassing the

health check.

5. In the end, only 1.5 ETH was paid back instead of the 10 ETH and an 8.5

ETH bad debt loan has been created.

+44 808 2711555 info@hexens.io 17

function payInterestInternal(address borrowMarket, address payer, uint interestAmount) internal {

 if (interestAmount == 0) {

 return;

 }

 /* Fail if pay interest not allowed */

 uint allowed = comptroller.payInterestAllowed(address(this), borrowMarket, payer, interestAmount);

 require(allowed == 0, "pay not allowed");

 Exp memory exchangeRate = Exp({mantissa: exchangeRateStoredInternal()});

 uint interestTokens = div_(interestAmount, exchangeRate);

 // payer interest market balance is reduced to cover interest being paid

 uint balancePayer = accountTokens[payer];

 require(balancePayer >= interestTokens, "insufficient payer reserve");

 accountTokens[payer] = balancePayer - interestTokens;

 emit Transfer(payer, address(0), interestTokens);

 uint totalVirtual_ = totalVirtual;

 uint heldBalance;

 if (interestTokens > totalVirtual_) {

 heldBalance = interestTokens - totalVirtual_;

 totalSupply = totalSupply - totalVirtual_;

 totalVirtual = 0;

 } else {

 totalSupply = totalSupply - interestTokens;

 totalVirtual = totalVirtual_ - interestTokens;

 }

 if (heldBalance != 0) {

 // keep a reserve of cToken

 accountTokens[address(this)] = accountTokens[address(this)] + heldBalance;

 emit Transfer(address(0), address(this), heldBalance);

 }

}

+44 808 2711555 info@hexens.io

FNG-15. CERC721 LIQUIDATION WILL
ALWAYS REVERT IF INTEREST STATE
IS UP-TO-DATE

SEVERITY: High

PATH: CErc721.sol:_liquidateBorrow:L428-464

REMEDIATION: either accrueInterest() should return the exchange
rate in the short-circuit branch, or _liquidateBorrow should handle
this case correctly

STATUS: fixed

DESCRIPTION:

The function _liquidateBorrow of the CErc721 contract fetches the current

exchange rate using accrueInterest() on line 431:

Afterwards, this value is used in a check for freshness on lines 436-438:

However, the function accrueInterest() only returns the exchange rate at

the end of the function after the interest state has been updated. The

function will short-circuit if the interest state had already been updated in

the same block (i.e. accrualBlockNumber is equal to block.number),

which can be seen in lines 651-653:

18

uint assetsExchangeRate = accrueInterest();

if (accrualBlockNumber != getBlockNumber() || assetsExchangeRate == 0) {

 revert LiquidateFreshnessCheck();

}

if (accrualBlockNumberPrior == currentBlockNumber) {

 return NO_ERROR;

}

+44 808 2711555 info@hexens.io 19

In this case, it will return NO_ERROR (0) and consequently the

_liquidateBorrow function will always revert due to the freshness check.

As a result, liquidations will always fail if there were any interactions with

the CToken, if there are multiple liquidations in one block and liquidations

could be blocked by front-running with a call to accrueInterest().

+44 808 2711555 info@hexens.io 20

function _liquidateBorrow(address liquidator, address borrower, uint[] memory nftIds) override external nonReentrant

returns (uint) {

 require(msg.sender == address(comptroller), "unauthorized");

 uint assetsExchangeRate = accrueInterest();

 uint repayAmount = nftIds.length * expScale;

 /* Verify market's block number equals current block number */

 if (accrualBlockNumber != getBlockNumber() || assetsExchangeRate == 0) {

 revert LiquidateFreshnessCheck();

 }

 /* Fail if borrower = liquidator */

 if (borrower == liquidator) {

 revert LiquidateLiquidatorIsBorrower();

 }

 /* Fail if repayAmount = 0 */

 if (repayAmount == 0) {

 revert LiquidateCloseAmountIsZero();

 }

 /* Fail if repayBorrow fails */

 uint repayInterest;

 (repayAmount, repayInterest) = repayBorrowFresh(liquidator, borrower, nftIds, 0);

 /* We emit a LiquidateBorrow event */

 //emit LiquidateBorrow(liquidator, borrower, nftIds, repayInterest, cTokenCollaterals, seizeTokensList);

 // convert interest value to NFT units

 repayInterest = repayInterest * expScale / assetsExchangeRate;

 // combine in NFT unit terms for seizure calculation

 uint actualRepayAmount = repayAmount + repayInterest;

 return actualRepayAmount;

}

+44 808 2711555 info@hexens.io

FNG-16. LOANS WITH CERC721
COLLATERAL CAN BE MADE
UNLIQUIDATABLE

SEVERITY: High

PATH: CErc721.sol:_seize:L470-508

REMEDIATION: the combination of transferrable CErc721 shares
and the rounding for full NFTs are a source of trouble. We would
like to recommend to not round up to the nearest NFT on
liquidation

we do not recommend making CErc721 shares non-transferrable.
Even though this would mitigate the issue, it highly impacts the
user experience and goes against the essence of the protocol. It
would also not allow any 3rd party protocol to integrate with
CErc721 (e.g. DEXs or yield aggregators)

STATUS: fixed

DESCRIPTION:

The _seize function for CErc721 will always round up to a token amount for

full NFTs. This function is used for reward a liquidator in

Comptroller.sol:batchLiquidateBorrow with the value that came from a

liquidated debt of a borrower.

If the liquidation value is less than a full NFT amount, then the amount is

rounded up to the nearest NFT on lines 475-479:

21

+44 808 2711555 info@hexens.io 22

uint oneNFTAmount = doubleScale / exchangeRateStoredInternal();

if (seizeTokens % oneNFTAmount != 0) {

 // ensure whole nft seize size by rounding up to the next whole NFT

 seizeTokens = ((seizeTokens / oneNFTAmount) + 1) * oneNFTAmount;

}

However, this does work if the borrower owns less than 1 NFT in collateral,

e.g. by transferring come CNFT tokens to another address and then

creating a loan.

As a result, any loan that has a CErc721 as collateral can be forcefully

made unliquidatable by the borrower, as the liquidation process would

always revert.

For example:

1. Borrower mints 1 CNFT from their NFT.

2. Borrower transfer 1 wei CNFT to another address, keeping 0.9999

CNFT shares.

3. Borrower can now create a loan with the 0.9999 CNFT, one that is

almost as large as with the full NFT, e.g. 0.84999 the value of the NFT

in USDC (with an 85% collateral factor).

4. The liquidator can now never liquidate this loan, as it would result in

an underflow revert, since the borrower does not own 1 CNFT.

This will create a strategy for borrowers to always profit from the protocol.

For example, if the loan become unhealthy, the protocol cannot liquidate

this to obtain the collateral, creating bad debt. The borrower would be

protected from the drop in price of their collateral. On the other hand, if the

collateral increases in price, the borrower can simply repay the loan and

re-obtain their collateral.

+44 808 2711555 info@hexens.io 23

function _seize(address liquidator, address borrower, uint seizeTokens) override external nonReentrant returns (uint) {

 require(msg.sender == address(comptroller), "unauthorized");

 accrueInterest();

 uint oneNFTAmount = doubleScale / exchangeRateStoredInternal();

 if (seizeTokens % oneNFTAmount != 0) {

 // ensure whole nft seize size by rounding up to the next whole NFT

 seizeTokens = ((seizeTokens / oneNFTAmount) + 1) * oneNFTAmount;

 }

 /* Fail if seize not allowed */

 /*uint allowed = comptroller.seizeAllowed(address(this), seizerToken, liquidator, borrower, seizeTokens);

 if (allowed != 0) {

 revert LiquidateSeizeComptrollerRejection(allowed);

 }*/

 /* Fail if borrower = liquidator */

 if (borrower == liquidator) {

 revert LiquidateSeizeLiquidatorIsBorrower();

 }

 uint liquidatorSeizeTokens = seizeTokens;

 /////////////////////////

 // EFFECTS & INTERACTIONS

 // (No safe failures beyond this point)

 /* We write the calculated values into storage */

 accountTokens[borrower] = accountTokens[borrower] - seizeTokens;

 accountTokens[liquidator] = accountTokens[liquidator] + liquidatorSeizeTokens;

 /* Emit a Transfer event */

 emit Transfer(borrower, liquidator, liquidatorSeizeTokens);

 //emit Transfer(borrower, address(this), protocolSeizeTokens);

 //emit ReservesAdded(address(this), protocolSeizeAmount, totalReservesNew);

 return seizeTokens;

}

+44 808 2711555 info@hexens.io

FNG-2. INADEQUATE CONSTRAINTS
ON SEIZE SHARE MANTISSA IN THE
PROTOCOL

SEVERITY: Medium

PATH: CToken.sol:L878-894

REMEDIATION: define an upper bound or a reasonable range for
the protocolSeizeShareMantissa parameter to prevent it from
being set too high or too low

STATUS: fixed

DESCRIPTION:

In the current implementation of the protocol, the

protocolSeizeShareMantissa parameter in comparison with Compound is

not constant (CTokenInterface.sol line 113) and can be adjusted by the

admin. This lack of constraints could potentially introduce risks and

imbalances in the protocol's operation.Allowing the admin to modify this

parameter without appropriate restrictions might lead to the following

concerns:

1. Risk of Overcapitalization: If an admin decides to set the

protocolSeizeShareMantissa too high, it could lead to

overcapitalization of the reserves, potentially causing inefficiencies in

the allocation of assets and negatively impacting users' earnings.

24

+44 808 2711555 info@hexens.io 25

function _setProtocolSeizeShare(uint newProtocolSeizeShareMantissa) virtual override external returns (uint) {

 // Check caller is admin

 if (msg.sender != admin) {

 revert SetReserveFactorAdminCheck();

 }

 // Save current value for use in log

 uint oldProtocolSeizeShareMantissa = protocolSeizeShareMantissa;

 // Set liquidation incentive to new incentive

 protocolSeizeShareMantissa = newProtocolSeizeShareMantissa;

 // Emit event with old incentive, new incentive

 emit NewProtocolSeizeShare(oldProtocolSeizeShareMantissa, newProtocolSeizeShareMantissa);

 return NO_ERROR;

}

2. Imbalance in Collateral Seizure: An excessively high

protocolSeizeShareMantissa may incentivize users to seek

liquidations, potentially leading to a sudden surge in collateral seized

by the protocol. This could create an imbalance in the ecosystem and

undermine stability.

+44 808 2711555 info@hexens.io

FNG-8. ALL NFTS ARE EVALUATED AT
THEIR FLOOR PRICE AND CAN LEAD
TO USER'S LOSS

SEVERITY: Medium

PATH: CErc721.sol:doNFTTransferOut:L624-637

REMEDIATION: this constitutes to a user risk and users holding
NFTs with a significant higher price than the floor price should at
least be warned by the front-end that their NFT won’t be evaluated
at its price

STATUS: acknowledged, see commentary

DESCRIPTION:

In the CErc721.sol when the user mints CTokens with the mint() function the

user supplies nftIds which they would like to exchange for CTokens. But the

exchangeRate is fixed for any NFT in that collection. This might lead to

NFTs with different prices leading to the user getting the same amount of

CTokens, as all NFTs are basically evaluated at their floor price.

The same price calculation is missing in the redeem() function which once

again leads to that same problem. For example the Azuki NFTs, which

according to the protocols documentation is supported, currently has NFT

Azuki #1725 which was sold for 7.30 ETH and Azuki #5544 which was sold

for 4.135 ETH. In case both of those users decided to mint their NFTs in the

CErc721.sol and while their prices have significant difference both of them

would get the same amount of CTokens.

26

+44 808 2711555 info@hexens.io

This can lead to malicious user changing his low value NFT for a much

higher value NFT because of the way the doNFTTransferOut() is

implemented.

The documentation claims that when the user calls the redeem() function

the protocol would use Chainlink’s VRF to get a verifiable random number to

give a random NFT to the user who called the redeem() function, but

instead the protocol gives the last NFT that was deposited into the protocol

to the user. This can be seen in the implementation of the

doNFTTransferOut() where the protocol transfers the last element of the

heldNFTs array which contains the ids of all of the NFTs that were deposited

into the contract. Thus the following case might happen:

● The malicious user deposits a cheap NFT for some x amount of tokens

in the CErc721.sol

● A normal user comes and deposits his expensive NFT into the same

contract

● The malicious user seeing that a more expensive NFT was deposited

into the contract and because all of the NFTs have a flat

exchangeRate with CTokens, the malicious user redeems his tokens

for the more expensive NFT thus changing his cheap NFT for a more

expensive NFT

27

+44 808 2711555 info@hexens.io 28

function mint(uint[] memory nftIds) external override nonReentrant returns (uint) {

 comptroller.autoEnterMarkets(msg.sender); // silent failure allowed

 accrueInterest();

 uint mintAmount = nftIds.length * expScale;

 address minter = msg.sender;

 /* Fail if mint not allowed */

 uint allowed = comptroller.mintAllowed(address(this), minter, mintAmount);

 if (allowed != 0) {

 revert MintComptrollerRejection(allowed);

 }

 /* Verify market's block number equals current block number */

 if (accrualBlockNumber != getBlockNumber()) {

 revert MintFreshnessCheck();

 }

 Exp memory exchangeRate = Exp({mantissa: exchangeRateStoredInternal()});

 /////////////////////////

 // EFFECTS & INTERACTIONS

 // (No safe failures beyond this point)

 supplyInterest[minter].interestAccrued = supplyInterestStoredInternal(minter);

 supplyInterest[minter].interestIndex = supplyIndex;

 uint actualMintAmount = doNFTTransferIn(minter, nftIds) * expScale;

 /*

 * We get the current exchange rate and calculate the number of cTokens to be minted:

 * mintTokens = actualMintAmount / exchangeRate

 */

 uint mintTokens = div_(actualMintAmount, exchangeRate);

+44 808 2711555 info@hexens.io 29

 /*

 * We calculate the new total supply of cTokens and minter token balance, checking for overflow:

 * totalSupplyNew = totalSupply + mintTokens

 * accountTokensNew = accountTokens[minter] + mintTokens

 * And write them into storage

 */

 totalSupply = totalSupply + mintTokens;

 accountTokens[minter] = accountTokens[minter] + mintTokens;

 /* We emit a Mint event, and a Transfer event */

 emit Mint(minter, actualMintAmount, mintTokens, nftIds);

 emit Transfer(address(this), minter, mintTokens);

 /* We call the defense hook */

 // unused function

 // comptroller.mintVerify(address(this), minter, actualMintAmount, mintTokens);

 return NO_ERROR;

}

+44 808 2711555 info@hexens.io 30

function redeemFresh(address payable redeemer, uint redeemTokensIn, uint redeemAmountIn) internal override {

 require(redeemTokensIn == 0 || redeemAmountIn == 0, "one of redeemTokensIn or redeemAmountIn must be zero");

 // NFT count -> amount

 redeemAmountIn = redeemAmountIn * expScale; //1e18

 /* exchangeRate = invoke Exchange Rate Stored() */

 Exp memory exchangeRate = Exp({mantissa: exchangeRateStoredInternal() });

 uint redeemTokens;

 uint redeemAmount;

 /* If redeemTokensIn > 0: */

 if (redeemTokensIn > 0) {

 /*

 * We calculate the exchange rate and the amount of underlying to be redeemed:

 * redeemTokens = redeemTokensIn

 * redeemAmount = redeemTokensIn x exchangeRateCurrent

 */

 redeemTokens = redeemTokensIn;

 redeemAmount = mul_ScalarTruncate(exchangeRate, redeemTokensIn);

 } else {

 /*

 * We get the current exchange rate and calculate the amount to be redeemed:

 * redeemTokens = redeemAmountIn / exchangeRate

 * redeemAmount = redeemAmountIn

 */

 redeemTokens = div_(redeemAmountIn, exchangeRate);

 redeemAmount = redeemAmountIn;

 }

 require(redeemAmount % expScale == 0, "invalid redeemTokens");

 uint redeemNFTCount = redeemAmount / expScale;

 /* Fail if redeem not allowed */

 uint allowed = comptroller.redeemAllowed(address(this), redeemer, redeemTokens);

 if (allowed != 0) {

 revert RedeemComptrollerRejection(allowed);

 }

+44 808 2711555 info@hexens.io 31

 /* Verify market's block number equals current block number */

 if (accrualBlockNumber != getBlockNumber()) {

 revert RedeemFreshnessCheck();

 }

 /* Fail gracefully if protocol has insufficient cash */

 if (getNFTsHeld() < redeemNFTCount) {

 revert RedeemTransferOutNotPossible();

 }

 /////////////////////////

 // EFFECTS & INTERACTIONS

 // (No safe failures beyond this point)

 uint redeemInterestAmount = supplyInterestStoredInternal(redeemer);

 supplyInterest[redeemer].interestIndex = supplyIndex;

 /*

 * We write the previously calculated values into storage.

 * Note: Avoid token reentrancy attacks by writing reduced supply before external transfer.

 */

 totalSupply = totalSupply - redeemTokens;

 uint accountTokensNew = accountTokens[redeemer] - redeemTokens;

 accountTokens[redeemer] = accountTokensNew;

 uint256[] memory nftIds = doNFTTransferOut(redeemer, redeemNFTCount);

 if (redeemInterestAmount != 0) {

 supplyInterest[redeemer].interestAccrued = 0;

 interestMarket.collectInterest(redeemer, redeemInterestAmount);

 }

 /* We emit a Transfer event, and a Redeem event */

 emit Transfer(redeemer, address(this), redeemTokens);

 emit Redeem(redeemer, redeemNFTCount, redeemTokens, nftIds);

 /* We call the defense hook */

 comptroller.redeemVerify(address(this), redeemer, redeemAmount, redeemTokens);

+44 808 2711555 info@hexens.io 32

if (accountTokensNew == 0 && borrowBalanceStoredInternal(redeemer) == 0) {

 comptroller.autoExitMarkets(redeemer); // silent failure allowed

 }

}

function doNFTTransferOut(address to, uint nftCount) virtual internal returns (uint256[] memory nftIds) {

 nftIds = new uint256[](nftCount);

 uint256 nftID;

 uint idx = heldNFTs.length;

 IERC721 underlying_ = IERC721(underlying);

 for(uint i = 0; i < nftCount;) {

 idx--;

 nftID = heldNFTs[idx];

 underlying_.transferFrom(address(this), to, nftID);

 heldNFTs.pop();

 nftIds[i] = nftID;

 unchecked { i++; }

 }

}

Commentary from the client:

“ - By design, all NFTs deposited or withdrawn from the protocol are

considered "floor priced". Users should not deposit NFTs they do not want

treated as floor priced by the protocol. For a given collection, the NFT you

deposit may not be the NFT you eventually withdraw. We document this for

users and warn them in the UI.”

+44 808 2711555 info@hexens.io

FNG-3. MISSING MAXIMUM LIMIT ON
STALEPRICEDELAY

SEVERITY: Low

PATH: ChainlinkPriceOracle.sol:L150-157

REMEDIATION: add a reasonable maximum limit for the
stalePriceDelay

STATUS: fixed

DESCRIPTION:

In the contract ChainlinkPriceOracle.sol there is an issue related to the

stalePriceDelay variable, which is used to determine how long it takes for a

Chainlink price feed to be considered stale. Currently, this variable is set to

a value of 1 day in comments. However, there is a lack of a maximum limit

check when the setStalePriceDelay function is called. This means that the

admin can set an unbounded value for stalePriceDelay, which effectively

nullifies the purpose of having a "stale price" check.

33

function setStalePriceDelay(uint _stalePriceDelay) external {

 // Check caller = admin

 if (msg.sender != admin) {

 revert("unauthorized");

 }

 stalePriceDelay = _stalePriceDelay;

}

+44 808 2711555 info@hexens.io 34

FNG-19. CUSTOM ERRORS

SEVERITY: Low

REMEDIATION: see description

STATUS: fixed

DESCRIPTION:

In various contracts the validation checks are performed using the require

function with a reason string.

For example:

We would recommend to replace these with custom errors. This should be

done by flipping the check.

For example:

becomes

The usage of custom errors will save a lot of gas during deployment as well

as save on code bytesize of the contract (because strings won’t have to be

embedded in the code). Furthermore, custom errors are much clearer as

they allow for parameter values, making debugging much easier.

require(redeemTokensIn == 0 || redeemAmountIn == 0, "one of redeemTokensIn or redeemAmountIn must be zero");

require(X == Y, "X is not Y");

error XnotY(uint, uint);

if (X != Y)

 revert XnotY(X, Y);

+44 808 2711555 info@hexens.io 35

FNG-7. MISSING RECOVER
MECHANISMS FOR ETH AND ERC20
TOKENS

SEVERITY: Informational

PATH: CErc20.sol:sweepToken:L134-139

REMEDIATION: recommend adding a mechanism to the CErc20.sol
contract to handle the recovery of mistakenly sent ETH, also add
a function in the CEther.sol contract that allows for the recovery
of accidentally sent ERC20 tokens

STATUS: fixed

DESCRIPTION:

The sweepToken function in the CErc20.sol contract is designed to recover

accidental ERC-20 transfers made to this contract. However, this function

does not account for accidentally sending ETH. As a result, if users

inadvertently send ETH to this contract, they stand to lose their funds.

Similarly, the CEther.sol contract lacks a mechanism to reclaim

accidentally sent ERC20 tokens, leading to the potential loss of those

tokens for users.

+44 808 2711555 info@hexens.io 36

 /**

 * @notice A public function to sweep accidental ERC-20 transfers to this contract. Tokens are sent to admin

(timelock)

 * @param token The address of the ERC-20 token to sweep

 */

 function sweepToken(EIP20NonStandardInterface token) virtual override external {

 require(msg.sender == admin, "CErc20::sweepToken: only admin can sweep tokens");

 require(address(token) != underlying, "CErc20::sweepToken: can not sweep underlying token");

 uint256 balance = token.balanceOf(address(this));

 token.transfer(admin, balance);

 }

+44 808 2711555 info@hexens.io 37

FNG-12. REDUNDANT CODE

SEVERITY: Informational

REMEDIATION: remove all unnecessary or redundant code
presented above and in other locations

STATUS: fixed

DESCRIPTION:

There are several contracts with functions and variables that are redundant

and would waste deployment gas as they are not used or instantly revert.

This also hurts readability.

CErc721.sol:

function liquidateBorrow(address borrower, uint repayAmount, CTokenInterface cTokenCollateral) override external

returns (uint) {

 revert("unsupported");

}

+44 808 2711555 info@hexens.io 38

function doTransferIn(address from, uint amount) virtual override internal returns (uint) {

 // Read from storage once

 address underlying_ = underlying;

 EIP20NonStandardInterface token = EIP20NonStandardInterface(underlying_);

 uint balanceBefore = EIP20Interface(underlying_).balanceOf(address(this));

 token.transferFrom(from, address(this), amount);

 bool success;

 assembly {

 switch returndatasize()

 case 0 { // This is a non-standard ERC-20

 success := not(0) // set success to true

 }

 case 32 { // This is a compliant ERC-20

 returndatacopy(0, 0, 32)

 success := mload(0) // Set `success = returndata` of override external call

 }

 default { // This is an excessively non-compliant ERC-20, revert.

 revert(0, 0)

 }

 }

 require(success, "TOKEN_TRANSFER_IN_FAILED");

 // Calculate the amount that was *actually* transferred

 uint balanceAfter = EIP20Interface(underlying_).balanceOf(address(this));

 return balanceAfter - balanceBefore; // underflow already checked above, just subtract

}

CErc20.sol:

function liquidateBorrow(address borrower, uint repayAmount, CTokenInterface cTokenCollateral) override external

returns (uint) {

 revert("unsupported");

}

+44 808 2711555 info@hexens.io 39

CEther.sol:

CToken.sol:

function liquidateBorrow(address borrower, uint repayAmount, CTokenInterface cTokenCollateral) override external

returns (uint) {

 revert("unsupported");

}

function seize(address liquidator, address borrower, uint seizeTokens) override external /*nonReentrant*/ returns

(uint) {

 revert("unsupported");

}

+44 808 2711555 info@hexens.io 40

FNG-13. MISSING EVENT ON CERC721
LIQUIDATION

SEVERITY: Informational

PATH: CErc721.sol:_liquidateBorrow:L427-463

REMEDIATION: we recommend emitting events of crucial
functionality and state changes to improve transparency and
facilitate protocol integration and off-chain tracking

STATUS: fixed

DESCRIPTION:

The function _liquidateBorrow will liquidate an ERC721 loan for a borrower.

However, the function does not emit an event upon liquidation, in contrast to

liquidations in for example CErc20.

This makes off-chain tracking more difficult and will impair the front-end

and user experience.

+44 808 2711555 info@hexens.io 41

function _liquidateBorrow(address liquidator, address borrower, uint[] memory nftIds) override external nonReentrant

returns (uint) {

 require(msg.sender == address(comptroller), "unauthorized");

 uint assetsExchangeRate = accrueInterest();

 uint repayAmount = nftIds.length * expScale;

 /* Verify market's block number equals current block number */

 if (accrualBlockNumber != getBlockNumber() || assetsExchangeRate == 0) {

 revert LiquidateFreshnessCheck();

 }

 /* Fail if borrower = liquidator */

 if (borrower == liquidator) {

 revert LiquidateLiquidatorIsBorrower();

 }

 /* Fail if repayAmount = 0 */

 if (repayAmount == 0) {

 revert LiquidateCloseAmountIsZero();

 }

 /* Fail if repayBorrow fails */

 uint repayInterest;

 (repayAmount, repayInterest) = repayBorrowFresh(liquidator, borrower, nftIds, 0);

 /* We emit a LiquidateBorrow event */

 //emit LiquidateBorrow(liquidator, borrower, nftIds, repayInterest, cTokenCollaterals, seizeTokensList);

 // convert interest value to NFT units

 repayInterest = repayInterest * expScale / assetsExchangeRate;

 // combine in NFT unit terms for seizure calculation

 uint actualRepayAmount = repayAmount + repayInterest;

 return actualRepayAmount;

}

+44 808 2711555 info@hexens.io 42

FNG-14. FUNCTION SHOULD BE
MARKED EXTERNAL

SEVERITY: Informational

PATH: CErc721.sol:borrowAndInterestBalanceStored:L715-717

REMEDIATION: change it’s access modifier to external in favour of
code and gas optimisation

STATUS: fixed

DESCRIPTION:

The function borrowAndInterestBalanceStored is never called internally,

therefore, there is no reason for it to be public instead of external.

function borrowAndInterestBalanceStored(address account) public view returns (uint, uint) {

 return borrowAndInterestBalanceStoredInternal(account);

}

+44 808 2711555 info@hexens.io 43

FNG-18. CONDITIONAL EARLY EXIT
OPTIMISATION

SEVERITY: Informational

REMEDIATION: see description

STATUS: fixed

DESCRIPTION:

There are some conditionals that could be optimised by changing the order

of elements by frequency/gas cost to allow for early exits and save gas on

each function call.

We have identified the following locations:

1. CErc721.sol:repayBorrowFresh on line 381, there is a storage read in

the first element and a

2. CEther.sol:repayBorrowFresh on line 172;

3. CToken.sol:repayBorrowFresh on line 700.

In each of the above mentioned locations, there is a storage read in the first

element and a local stack variable in the second element. Since this

conditional won’t always be triggered, switching the elements would allow

for an early exit without a storage read, saving gas on each partial repay.

if (accountTokens[borrower] == 0 && accountBorrowsNew == 0) {

 comptroller.autoExitMarkets(borrower); // silent failure allowed

}

+44 808 2711555 info@hexens.io 44

Change the mentioned code locations to:

if (accountBorrowsNew == 0 && accountTokens[borrower] == 0) {

45

